If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+15x-150=0
a = 1; b = 15; c = -150;
Δ = b2-4ac
Δ = 152-4·1·(-150)
Δ = 825
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{825}=\sqrt{25*33}=\sqrt{25}*\sqrt{33}=5\sqrt{33}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(15)-5\sqrt{33}}{2*1}=\frac{-15-5\sqrt{33}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(15)+5\sqrt{33}}{2*1}=\frac{-15+5\sqrt{33}}{2} $
| x-5(x-1)=-(2x-3) | | 14.95=7.55-x | | b-35+68=180 | | 5x-8-3x=5 | | y=2y-52 | | t÷(-11)=11 | | 5(w-2)-8w=-25 | | m+4=31 | | 5u+64=7u+40 | | 2d+1/6=-6(1/3d+1) | | (1/8)^2x+4=16^4-x | | -7.9=x/3-3.1 | | 2y+51=10y+35 | | 5x+43=5 | | 16.6+u/6=-3.1 | | 7t-18=10t-39 | | p/14=17/20 | | 9x^2–60=4 | | 9x2–60=4 | | (5x+4)+(7x+2)=180 | | 20-3x+15=8 | | (r)=r^2−6r−55 | | 2(k+7)=18 | | 16^x*64^3-3x=64 | | -63+f=82 | | 5x=43/5 | | 3x-2(-5.5+x)=19 | | 1/2(x-6)=-2 | | 2(12-y)=23-(2y)-1 | | 10=(1/5w-3/2) | | x+(.02x)=306 | | -2y+8=4 |